Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage
نویسنده
چکیده
We examine relations between popular variational methods in image processing and classical operator splitting methods in convex analysis. We focus on a gradient descent reprojection algorithm for image denoising and the recently proposed Split Bregman and alternating Split Bregman methods. By identifying the latter with the so-called DouglasRachford splitting algorithm we can guarantee its convergence. We show that for a special setting based on Parseval frames the gradient descent reprojection and the alternating Split Bregman algorithm are equivalent and turn out to be a frame shrinkage method.
منابع مشابه
Eventual linear convergence of the Douglas Rachford iteration for basis pursuit
We provide a simple analysis of the Douglas-Rachford splitting algorithm in the context of ` minimization with linear constraints, and quantify the asymptotic linear convergence rate in terms of principal angles between relevant vector spaces. In the compressed sensing setting, we show how to bound this rate in terms of the restricted isometry constant. More general iterative schemes obtained b...
متن کاملDeblurring Poissonian images by split Bregman techniques
The restoration of blurred images corrupted by Poisson noise is an important task in various applications such as astronomical imaging, electronic microscopy, single particle emission computed tomography (SPECT) and positron emission tomography (PET). In this paper, we focus on solving this task by minimizing an energy functional consisting of the I-divergence as similarity term and the TV regu...
متن کاملCurvelet-Wavelet Regularized Split Bregman Iteration for Compressed Sensing
Compressed sensing is a new concept in signal processing. Assuming that a signal can be represented or approximated by only a few suitably chosen terms in a frame expansion, compressed sensing allows to recover this signal from much fewer samples than the Shannon-Nyquist theory requires. Many images can be sparsely approximated in expansions of suitable frames as wavelets, curvelets, wave atoms...
متن کاملA Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery
Under consideration is the large body of signal recovery problems that can be formulated as the problem of minimizing the sum of two (not necessarily smooth) lower semicontinuous convex functions in a real Hilbert space. This generic problem is analyzed and a decomposition method is proposed to solve it. The convergence of the method, which is based on the Douglas-Rachford algorithm for monoton...
متن کاملOn the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
This paper shows, by means of a new type of operator called a splitting operator, that the Douglas-Rachford splitting method for finding a zero of the sum of two monotone operators is a special case of the proximal point algorithm. Therefore, applications of Douglas-Rachford splitting, such as the alternating direction method of multipliers for convex programming decomposition, are also special...
متن کامل